
Linux Guide

Linux Guide

Linux Guide
Copyright © 2011 taskit GmbH

All rights to this documentation and to the product(s) described herein are reserved by taskit GmbH.

This document was written with care, but errors cannot be excluded. Neither the company named above nor the seller assumes legal liability
for mistakes, resulting operational errors or the consequences thereof. Trademarks, company names and product names may be protected
by law. This document may not be reproduced, edited, copied or distributed in part or in whole without written permission.

This document was generated on 2014-07-09T15:28:05+02:00.

Linux Guide

iii

Table of Contents
1. Introduction ... 1
2. Supported products ... 2
3. Configuring the system ... 3

3.1. Using the package manager ... 3
3.1.1. Updating the package database .. 3
3.1.2. Upgrade installed software ... 3
3.1.3. Installing new software ... 3
3.1.4. Removing installed packages .. 3
3.1.5. Listing available packages .. 4
3.1.6. Search for a package in the package list .. 4
3.1.7. Listing installed packages ... 4

3.2. Configuring network interfaces .. 4
3.2.1. Automatic configuration (DHCP) ... 5
3.2.2. Static configuration ... 5

4. Setting up a development system ... 6
4.1. Installing the toolchain ... 6
4.2. Setting up an NFS Server .. 7
4.3. Setting up a TFTP server .. 7

5. Compiling and debugging applications ... 9
5.1. Compiling the application sample ... 9

5.1.1. Stamp9G20/PortuxG20 .. 9
5.1.2. Stamp9G45 .. 9

5.2. Starting the sample ... 9
5.3. Debugging the sample .. 10
5.4. Downsizing the binary .. 10

6. Compiling a new Linux kernel .. 11
6.1. Unpacking the kernel sources .. 11
6.2. Configuring the kernel .. 11
6.3. Compiling the kernel ... 12
6.4. Preparing the kernel image .. 13
6.5. Installing the kernel .. 13

7. Creating a new root filesystem ... 14
7.1. Setting up the OpenEmbedded build system .. 14

7.1.1. Prerequisites .. 14
7.1.2. Getting the needed metadata .. 14
7.1.3. Configuring bitbake ... 15
7.1.4. Setting up the environment .. 17
7.1.5. Keeping the metadata up to date .. 18

7.2. Building and installing images .. 18
7.2.1. Building images ... 18
7.2.2. Installing images ... 20

7.3. Customizing images .. 22
7.3.1. Creating your own machine .. 22
7.3.2. Creating your own image .. 25
7.3.3. Customizing existing packages ... 27
7.3.4. Adding own packages .. 28

8. Using and configuring the bootloader .. 30

Linux Guide

iv

8.1. Concepts .. 30
8.1.1. Components ... 30
8.1.2. Boot procedure .. 30

8.2. Reference .. 31
8.2.1. Environment variables .. 31

Linux Guide

v

List of Figures
6.1. Kernel configuration dialog .. 12
8.1. Boots flow-chart ... 31

Linux Guide

vi

List of Tables
3.1. Elements of /etc/network/interfaces ... 5

Linux Guide

vii

List of Examples
3.1. DHCP network configuration ... 5
3.2. Static network configuration with all options .. 5
7.1. Bitbake local configuration .. 16
7.2. Bitbake layer configuration .. 17
7.3. Extended bitbake layer configuration .. 17
7.4. Custom machine definition before modification .. 23
7.5. Custom machine definition after modification ... 24
7.6. Customized kernel recipe .. 25
7.7. custom-image.bb: Extending taskit-image ... 25
7.8. taskit-image.bb ... 26
7.9. custom-image.bb: Complete new image .. 27
7.10. Makefile .. 28
7.11. app_1.0.bb .. 29

Introduction

1

1. Introduction
Your product is delivered with a customized Linux and the boot loader U-Boot. This
document will describe how to install and customize the operation system.

Furthermore it will describe how to setup a development system and you will be given
small examples that demonstrate how to compile your own applications.

Because of the wide variety of existing operating systems taskit can only give support for
the Debian GNU/Linux operating system. Taskit is utilising the Linux-based operating
system Debian (http://www.debian.org) as development system because it is one of the
most reliable operating systems. Furthermore it is easy to install additional software
on Debian because you only need the tool apt-get to automatically download software
packages that are installed and configured automatically. Debian can be downloaded
free from the internet and the installation is also very easy because you only need to
download a portion (http://www.debian.org/distrib/netinst) and the remaining parts will
be automatically downloaded and installed from the internet.

A cross-platform toolchain for cross compiling on Debian can be found on the Starterkit-
CD. Developing on MS Windows is not supported by taskit.

Instructions for the first start-up are located in the QuickStartGuide. If you want to develop
your own drivers or hardware extensions you will have to work with the appropriate
Technical Reference and Atmel manual for your product.

The newest revision of this document can always be found on http://armbedded.eu/
documentation.

http://www.debian.org
http://www.debian.org/distrib/netinst
http://armbedded.eu/documentation
http://armbedded.eu/documentation

Supported products

2

2. Supported products
The specifications in this document apply to the following products:

• Stamp9G20

• Stamp9G45

• PortuxG20

Configuring the system

3

3. Configuring the system
This chapter describes, how you can configure the running system. Be aware that if you
are doing a mass deployment, it might make more sense to create complete images instead
of installing standard images and configuring them afterwards. Please consult Chapter 7,
Creating a new root filesystem if you want to learn more about creating images.

3.1. Using the package manager

The products covered by this manual use a package manager called opkg. It enables you
to install additional software without the need to (cross) compile it yourself. This section
contains information on common tasks when using opkg.

3.1.1. Updating the package database

Before you can install additional packages or update them you have to get the current list
of available packages:

opkg update

You can repeat this command as often as you want to ensure, that the package database
is always up to date. This way, the package manager always knows if there are updates
or new packages.

3.1.2. Upgrade installed software

From time to time, there might be updates to some packages, mostly because of bug fixes.
These updates can easily be installed after updating the packages database:

opkg upgrade

Do not worry about the download error at the end. It is there because the Ångström
distribution's website does not host packages specific to taskit boards. If the error
bothers you, you can remove the opkg config file specific to your board, e.g. /etc/opkg/
stamp9g20evb-feed.conf.

3.1.3. Installing new software

You can install software, that is currently not installed with the following command:

opkg install package

3.1.4. Removing installed packages

If you do not need a package anymore and want to get rid of it, you can remove it with opkg:

opkg remove package

When installing a package, opkg might also have installed additional packages, e.g.
libraries. You can instruct opkg to remove these software packages automatically when
removing packages:

Configuring the system

4

opkg -autoremove remove package

There are cases where you might be trying to remove packages that are needed by other
packages. If this happens opkg will list all packages that depend on the package to be
removed. You now have three choices:

1. Leave the package in the system

This might be your only choice, if you need the depending packages.

2. Remove the package and all packages depending on this package

If you do not need the other packages, you can let opkg remove them, too:

opkg -recursive remove package

You can also use the option -autoremove here.

3. Remove only the package

This is not advised because it is very likely that the dependent packages are broken
afterwards, but if you really want to do that, you can use the following command:

opkg -force-depends remove package

3.1.5. Listing available packages

Before installing a package you certainly want to know, which packages are available. Be
aware, that the following command can produce a very long list:

opkg list

3.1.6. Search for a package in the package list

As opkg has no native ability to search in the package list you have to use tools like grep
to search the package list, e.g.

opkg list|grep mysql

to find all packages containing mysql in their package name oder description.

3.1.7. Listing installed packages

If you want to know, which packages are currently installed, run

opkg list_installed

3.2. Configuring network interfaces

To configure network interfaces persistently, you have to edit the file /etc/network/
interfaces. Network interfaces configured in this file can be brought up and down with
the tools ifup and ifdown.

Configuring the system

5

element description
auto interface interface should be brought up when using ifup -a, i.e. when booting the

system
iface interface … configure interface
lines starting with # ignored as comments

Table 3.1. Elements of /etc/network/interfaces

The full syntax of the iface directive is:

iface interface address_family method
 option1 value1
 option2 value2
 ...

3.2.1. Automatic configuration (DHCP)

To use DHCP on eth0, you would enter the following into the configuration file.

auto eth0
iface eth0 inet dhcp

Example 3.1. DHCP network configuration

As this is the default, you normally do not have to do this.

3.2.2. Static configuration

In Example 3.2, “Static network configuration with all options” you can see a static
configuration for eth0. The IP address 192.168.1.100 is assigned and 192.168.1.1 is used
as the default gateway. The options network and broadcast are optional.

iface eth0 inet static
 address 192.168.1.100
 netmask 255.255.255.0
 gateway 192.168.1.1
 network 192.168.1.0
 broadcast 192.168.1.255

Example 3.2. Static network configuration with all options (network and broadcast are
optional)

Setting up a development system

6

4. Setting up a development system
The development system described here assumes that your device is connected to a
separate development computer, using either Ethernet or a serial cable. All transfers
between the two systems occur exclusively over this connection. The development system
does not have any particular hardware demands; a standard PC is in most cases sufficient.
A Linux workstation is normally used as a development computer for an embedded Linux
device. A network card and serial interface are required for the connection.

As a basis for such a host system, taskit recommends and supports the freely available
Debian Linux distribution for development. Debian stands out for its stability and
good packet management. Several ways to acquire Debian are described at http://
www.debian.org/distrib/. For complete installation instructions for the i386 architecture,
see http://www.debian.org/releases/stable/i386/install. The following descriptions relate
to such a Debian system.

You could also run a Linux system in a virtual environment using a virtual machine such
as VMWare, VirtualPC or VirtualBox. This solution, however, severely limits performance
and usability.

The following sections assume that you do all your development in the path /develop.
You can of course use a different path, but you have to adjust all the paths accordingly.

To create it just issue the following command with root rights:
mkdir /develop

Now change the permissions to be able to use it with your normal user account, e.g.
chown developer /develop

if your user account is called “developer”.

If you want to share this directory with other users, change the group of it:
chgrp users /develop
chmod 775 /develop

This allows all users in the group “users” (which are all users on Debian by default) to
access the directory with read and write permissions.

4.1. Installing the toolchain
A toolchain for cross compiling is the most important element of the development
system. Precompiled binaries for the i386 architecture are on the Starterkit CD. You can
find it in the toolchain directory, e.g. angstrom-2009.X-stable-armv5te-linux-
gnueabi-toolchain.tar.bz2. To install it, mount the CD and enter the following
commands:

tar -xvjf angstrom-2009.X-stable-armv5te-linux-gnueabi-toolchain.tar.bz2 -C /

For the Stamp9G45, the toolchain is available for 32-bit and 64-bit x86 systems. Choose the
corresponding file from the Stamp9G45 toolchain folder and extract it like in the previous
example.

http://www.debian.org/distrib/
http://www.debian.org/distrib/
http://www.debian.org/releases/stable/i386/install

Setting up a development system

7

The toolchain will be installed into the directory /usr/local/angstrom or similar
depending on the product and architecture.

The compilation of a toolchain itself is labour intensive and will not be described here.
The toolchain was made with OpenEmbedded (using the Ångström distribution), which
simplifies the compilation considerably. For more information on OpenEmbedded consult
Chapter 7, Creating a new root filesystem.

Additionally, further tools might be needed (e.g. make). To get the basic tools install the
package build-essential.

apt-get install build-essential

4.2. Setting up an NFS Server

After installing the toolchain, you can compile your own software for the arm processor.
In the early stages of development, it is convenient to mount the working directory on the
development system with NFS (network file system), in order to make changes available
quickly.

Installation of the NFS-Server:

apt-get install nfs-kernel-server

If an NFS server is already set up on the development system, you only need to add one
line to the /etc/exports file:

/develop 192.168.1.*(ro)

This gives every host with an IP in the range from 192.168.1.1 to 192.168.1.254 read-only
access to the directory /develop. For further options consult the exports(5) manual page.
Adjust this line according to your network setup and preferences.

The exported directory can then be mounted to a directory on the target board with the
mount command:

mkdir /mnt/develop
mount -t nfs -o nolock,tcp servername:/develop /mnt/develop

4.3. Setting up a TFTP server

To transfer customized firmware to the target board in the boot loader (U-Boot), TFTP
(Trivial File Transfer Protocol) is needed. Additionally, it is also possible to transfer
files while running the Linux system on the target board via TFTP. For this purpose a
corresponding TFTP server must be set up on the development system.

Use apt-get to install the required tftpd demon under Debian:

apt-get install tftpd

Usually tftpd is not started directly, but rather via the inetd Internet demon. An entry for
TFTP must be added in the inetd configuration file after installation. Under Debian, the

Setting up a development system

8

following line is automatically added to the configuration file /etc/inetd.conf during
packet installation:

tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd /tftpboot

As you can see, /tftpboot is the default directory for TFTP. If it does not exist you have
to create. Follow the same steps as for the /develop creation.

Compiling and debugging applications

9

5. Compiling and debugging applications
If everything is setup according to Chapter 4, Setting up a development system, you can
start to develop programs.

5.1. Compiling the application sample

In the /examples directory on the Starterkit CD you will find the example1.c file, which
contains C source code for a simple program for entering and printing text. For editing,
first copy the file to the /develop directory on the development computer.

5.1.1. Stamp9G20/PortuxG20

Before running any compiler command, you have to source the environment setup in your
shell:

. /usr/local/angstrom/arm/environment-setup

You can now compile the sample with the following command:

arm-angstrom-linux-gnueabi-gcc example1.c -o example1

5.1.2. Stamp9G45

Before running any compiler command, you have to source the environment setup in your
shell:

. /usr/local/angstrom-eglibc-i686-armv5te/environment-setup-armv5te-angstrom-linux-gnueabi

or

. /usr/local/angstrom-eglibc-x86_64-armv5te/environment-setup-armv5te-angstrom-linux-gnueabi

on a 64-bit system.

You can now compile the sample with the following command:

arm-angstrom-linux-gnueabi-gcc $CFLAGS $LDFLAGS example1.c -o example1

The following works also, as the CC environment variable is set:

$CC $CFLAGS $LDFLAGS example1.c -o example1

The usage of the CFLAGS and LDFLAGS variables is essential, as without them, the
compiler will not find all header files or libraries.

5.2. Starting the sample

If the execution rights for the newly created binary are set correctly, the program can now
be started on the target board:

cd /mnt/develop

Compiling and debugging applications

10

./example1

5.3. Debugging the sample

The GNU debugger (GDB) is one of the most important debugging tools for Linux. The
gdbserver itself is a small application that carries out commands from the gdb, which runs
on the development system. You will find the gdbserver in the Linux Starterkit's root file
system, in the /usr/bin directory.

Before debugging a program, you must compile it with the appropriate flags (-g or -ggdb
for more information).

arm-angstrom-linux-gnueabi-gcc -g example1.c -o example1_debug

If you include in debugging information, the binary created is much larger. As long as
you have the original version with the debugging information on the development system,
however, you can simply copy the smaller, stripped-down version to the target system. You
can strip down the debugger using the arm-angstrom-linux-gnueabi-strip tool.

For remote debugging, you can set up communication between the gdbserver on the taskit
device and the gdb on the development system either over a serial null modem cable or
over a TCP/IP connection. The connection via TCP/IP is described below. First you need
to start the gdbserver on the taskit device, and then create the connection from the gdb
on the development computer:

gdbserver host:port example1_debug

Host should be replaced with the host, where gdb will be started, but it is currently
ignored by gdbserver. As port, choose any available port. All command line parameters
for the program (if you later need some) must be given in this call. Then you can start the
gdb on the other system and create the connection to your taskit device:

arm-angstrom-linux-gnueabi-gdb example1_debug
(GDB) target remote remote_ip:port

Replace remote_ip with the ip of the target board and port with the port given to
gdbserver. Now you are ready to start debugging with the usual gdb commands.

5.4. Downsizing the binary

After compiling the example the file size of the binary can be notably reduced by removing
unneeded informations generated by the compiler as well as debug informations

arm-angstrom-linux-gnueabi-strip example1

Compiling a new Linux kernel

11

6. Compiling a new Linux kernel
If you work with Embedded Linux regularly, you will often face the need to create your
own kernel. In most cases, this involves integrating new drivers, e.g. for USB devices, or
additional file systems. Because memory space is limited on an embedded board, it does
not make sense to set up a large number of drivers to start with (as is common for desktop
PCs) unless you know for sure that you actually need them.

The kernel binaries and sources delivered with the product are made up of a standard
kernel with patches or drivers from taskit. The process for creating your own kernel is
broken down into three steps: configuring, compiling and installing.

6.1. Unpacking the kernel sources

Before you can configure and compile the kernel, you need the kernel source code. It can
be found on the Starterkit-CD in gzip- oder bzip2-compressed tar archive (tarball), e.g.
linux-2.6.29-stamp9g20.tar.bz2. It may also be possible, that there are updated versions
available for download, see http://armbedded.eu/downloads. Then the archive has to be
extracted to your development directory, e.g.:

tar -xvjf path/linux-2.6.29-stamp9g20.tar.bz2

Replace path with the path, where the Linux tarball can be found.

If you decompress a gzipped archive, replace -xvjf with -xvzf. Bzip2 tarballs commonly
have an extension of .tar.bz2 or .tbz2. Gzip tarballs use .tar.gz or .tgz.

6.2. Configuring the kernel

To configure the kernel, enter the just created directory. Because configuring the whole
kernel from scratch, taskit provides a default configuration for each product. To use the
it, enter the following command:

make ARCH=arm product_defconfig

Replace product with the name of the product, e.g. stamp9g20evb.

You can now change the kernel configuration. There are multiple interfaces available for
this purpose. They are provided via the make targets config, menuconfig, xconfig and
gconfig. We will use menuconfig.

In order to use menuconfig, curses headers have to be installed on your system. If they
are not at the moment, issue the following command to get them:

apt-get install ncurses-dev

You can now configure the kernel:

make ARCH=arm menuconfig

http://armbedded.eu/downloads

Compiling a new Linux kernel

12

Figure 6.1. Kernel configuration dialog

Figure 6.1, “Kernel configuration dialog” shows a screenshot of the menuconfig utility.
You can now enable and disable the options as you like. Each option can have up to three
states: “ ”, “M” and “*”. “ ” denotes disabled options, “M” means, they are compiled as a
module and can later be loaded with the help of insmod or modprobe, and “*” selects an
option to be built into the kernel image. If the option belongs to a driver built as a module,
“*” means, that this options is built into the module, not the kernel image.

When you are finished with configuring the kernel, exit and save the new configuration.
You are now ready to compile the kernel.

6.3. Compiling the kernel

Compiling is simple:

make ARCH=arm CROSS_COMPILE=arm-angstrom-linux-gnueabi-

This builds the kernel and all selected kernel modules. If you want to build the kernel and
the modules in two steps, use the following to commands:

make ARCH=arm CROSS_COMPILE=arm-angstrom-linux-gnueabi- zImage
make ARCH=arm CROSS_COMPILE=arm-angstrom-linux-gnueabi- modules

The kernel make file provides a target for installing the modules: modules_install. By
default, the modules are installed in /lib/modules. For cross-environment development,
the modules must be installed in a different directory. We will install it into /develop/
modules. When entering the path of the module directory, ensure that no relative paths
are given; since the script traverses the kernel directories, relative paths can change.

make ARCH=arm INSTALL_MOD_PATH=/develop/modules modules_install

Compiling a new Linux kernel

13

6.4. Preparing the kernel image

To be able to start the kernel with U-Boot, the image has to be wrapped in an uImage.
It adds a header containing important information for U-Boot. To create the uImage you
need the mkimage tool. You can find it in the /scripts directory on the Starterkit-CD.
Enter the following command to create the image:

mkimage -A arm -T kernel -O linux -C none -a 21000000 -e 21000000 -n linux \
-d arch/arm/boot/zImage uImage

6.5. Installing the kernel

Finally the image has to be programmed into the flash memory. We will do the procedure
in linux.

First, we have to identify the flash partition, where the image has to be programmed to.
You can get a list of all partitions with the following command:

cat /proc/mtd

You should get something like this:

dev: size erasesize name
mtd0: 00020000 00020000 "bootstrap"
mtd1: 00040000 00020000 "uboot"
mtd2: 00020000 00020000 "env1"
mtd3: 00020000 00020000 "env2"
mtd4: 00200000 00020000 "linux"
mtd5: 1fd60000 00020000 "root"

The image must be written to the partition with the name “linux”, in this case mtd4. We
will use this name in the following descriptions, replace all occurences of mtd4 in the next
steps with right one for your system.

Now you have to erase the flash partition:

flash_eraseall /dev/mtd4

Now you can write the image to the flash. It is assumed, that your development directory
is mounted on the target board and you changed your current working directory to the
kernel source tree.

flashcp -v uImage /dev/mtd4

If your board uses NAND flash, use these commands:

flash_eraseall /dev/mtd4
nandwrite -p /dev/mtd4 uImage

Creating a new root filesystem

14

7. Creating a new root filesystem
The root file system is the place where system applications and libraries are stored. Most
probably you want to change certain files or add additional software. If these changes
are minimal and only for a small number of devices, you can make these by hand on the
device. Changes will be preserved between reboots. Only certain directories (like /tmp)
will be wiped after each boot.

If you want to make bigger changes and deploy them on a lot of devices, it is advised to
create a new image, that can be flashed to all targets. The root file system provided by
taskit was made with OpenEmbedded (using the Ångström distribution). OpenEmbedded
is a build system using so-called recipes as build instructions used by the build tool
bitbake. This chapter will explain, how to set up your system to use OpenEmbedded to
create your root file system.

You may also consult the OpenEmbedded wiki for additional information: http://
wiki.openembedded.net/index.php/Main_Page

It is assumed, that all OpenEmbedded related work is done in the directory /develop/
oe. Adjust all paths, if you use a different directory.

Furthermore, all instructions are done exemplary for the Stamp9G20 evaluation board. If
you use a different machine, replace all occurrences of the machine name with the correct
one.

7.1. Setting up the OpenEmbedded build system

7.1.1. Prerequisites

Before you can start to use the OpenEmbedded build system, you need to install some
software first. On Debian everything should be installed after the following command
entered as root:

apt-get install ccache sed wget cvs subversion git-core bzip2 \
 coreutils unzip texi2html texinfo libsdl1.2-dev docbook-utils \
 gawk python-pysqlite2 diffstat help2man make gcc build-essential

If some packages are missing, bitbake will complain and tell you what is missing. Just
install the packages.

You can find additional information on http://wiki.openembedded.net/index.php/
Required_software and http://wiki.openembedded.net/index.php/OEandYourDistro.

7.1.2. Getting the needed metadata

First we create our working directory and enter it:
mkdir /develop/oe
cd /develop/oe

7.1.2.1. Stamp9G20/PortuxG20

Now we get the OpenEmbedded metadata. It is stored in a git revision control repository:

http://wiki.openembedded.net/index.php/Main_Page
http://wiki.openembedded.net/index.php/Main_Page
http://wiki.openembedded.net/index.php/Required_software
http://wiki.openembedded.net/index.php/Required_software
http://wiki.openembedded.net/index.php/OEandYourDistro

Creating a new root filesystem

15

git clone git://git.openembedded.org/openembedded

This will take a while. After the command is finished, you will have a new directory called
openembedded. It will contain all the OpenEmbedded metadata for the development
branch (org.openembedded.dev). As we want a more stable environment, we checkout
the stable branch:

cd openembedded
git checkout origin/stable/2009 -b stable/2009
cd ..

The stable branch also contains the build tool bitbake, which the development branch
does not. If you later decide to try out the development branch, you will have the
additional install step of obtaining bitbake which will not be discussed here. Refer to the
OpenEmbedded wiki.

Now you should get the taskit overlay for OpenEmbedded. Overlays contain additional
metadata, in this case metadata specific to taskit products.

git clone git://gitorious.org/taskit/taskit-overlay.git

7.1.2.2. Stamp9G45

For the Stamp9G45 OpenEmbedded Core was used instead of the classic OpenEmbedded,
so the setup is a bit different. OpenEmbedded Core uses a much more layered approach
regarding the metadata. Therefore we need to clone multiple repositories:

git clone git://git.openembedded.org/openembedded-core
git clone git://git.openembedded.org/meta-openembedded
git clone git://git.angstrom-distribution.org/meta-angstrom

Additionally clone the taskit overlay for OpenEmbedded Core:

git clone git://gitorious.org/taskit/taskit-overlay-oe-core.git

Finally, you need a current copy of bitbake in the openembedded-core directory. Use either
a snapshot (http://git.openembedded.org/bitbake/) or clone the bitbake repository:

git clone git://git.openembedded.org/bitbake

You can directly do this inside the openembedded-core directory or just create a symlink
there.

7.1.3. Configuring bitbake

7.1.3.1. Stamp9G20/PortuxG20

Now it is time to create the configuration. The configuration will be put into the file
build/conf/local.conf.

mkdir -p build/conf
vi build/conf/local.conf

You can use any other editor, if you are not comfortable with vi.

The file contents should look like in Example 7.1, “Bitbake local configuration”

http://git.openembedded.org/bitbake/

Creating a new root filesystem

16

DL_DIR = "/develop/oe/sources"
TMPDIR = /develop/oe/tmp
BBFILES = " \
 /develop/oe/taskit-overlay/recipes/*/*.bb \
 /develop/oe/openembedded/recipes/*/*.bb \
"
MACHINE ?= "stamp9g20evb"
DISTRO = "angstrom-2008.1"
ENABLE_BINARY_LOCALE_GENERATION = "1"
GLIBC_GENERATE_LOCALES = "en_GB.UTF-8 de_DE.UTF-8 fr_FR.UTF-8"
IMAGE_FSTYPES = "jffs2 tar"

Example 7.1. Bitbake local configuration

Source packages are downloaded to this directory
All compilation and packaging will be done in this directory. It will also contain a
subdirectory called deploy, where packages and images will be put.
This variable tells bitbake where packages recipes can be found. In this case we told
it to look into the OpenEmbedded repository and the taskit overlay.
Define the machine to build. It determines which kernel will be built and can select
machine specific package overrides. This variable can be overridden on the console,
because it is defined with “?=”.
Define the distribution to build. We use Ångström, as it is most tested distribution in
the OpenEmbedded repository.
This enables the binary locale generation. It speeds up the first boot of the target
board, because the locales are built on the development machine instead of the target.
Select only certain locales to speed up the build process. Add needed locales or
leave this variable out to build all locales, although this will increase the build time
considerably.
We create jffs2-images and tar-archives. See http://docs.openembedded.org/
usermanual/usermanual.html#image_types for all available image types. As you can
see, you can also specify multiple images types to create them all at once.

The jffs2-images will be used to deploy images in the flash memory. The tar-archives
can be used to write the rootfs to SD cards.

7.1.3.2. Stamp9G45

The basic configuration is automatically done by a script provided in the openembedd-
core directory called oe-init-build-env. If you source it with no parameters, it will
create and enter the directory called build in the current directory. This will be used for
the subsequent builds and contains the configuration files in the subdirectory conf.

The command would look like
. openembedded-core/oe-init-build-env

or
source openembedded-core/oe-init-build-env

You can also append another name to the command if would like to use a different build
directory.

Two configuration files will be created by default, bblayers.conf and local.conf. The
first one will by default look like in Example 7.2, “Bitbake layer configuration”

http://docs.openembedded.org/usermanual/usermanual.html#image_types
http://docs.openembedded.org/usermanual/usermanual.html#image_types

Creating a new root filesystem

17

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "4"

BBFILES ?= ""
BBLAYERS = " \
 /develop/oe/openembedded-core/meta \
 "

Example 7.2. Bitbake layer configuration

This has to be extend to look like in Example 7.3, “Extended bitbake layer configuration”.

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "4"

BBFILES ?= ""
BBLAYERS = " \
 /develop/oe/openembedded-core/meta \
 /develop/oe/meta-openembedded/meta-oe \
 /develop/oe/meta-openembedded/meta-gnome \
 /develop/oe/meta-openembedded/meta-efl \
 /develop/oe/meta-angstrom \
 /develop/oe/taskit-overlay-oe-core \
 "

Example 7.3. Extended bitbake layer configuration

The local.conf is basically fine as it is, but adjusting the MACHINE variable should make
it more convenient to invoke bitbake later on (set it to "stamp9g45"). Additionally, the
following line should be added, to use the Ångström distribution for building:

DISTRO = "angstrom-2010.x"

Read the comments in the file as some of the options can improve the build performance
on multicore systems.

7.1.4. Setting up the environment

Note

This section only applies to Stamp9G20 and PortuxG20. For the Stamp9G45, the
script from the previous section also sets up the environment, so just source it
again before you use bitbake in a new shell.

The last thing to do to get a working OpenEmbedded build environment is to set some
environment variables.

export BBPATH=/develop/oe/build:/develop/oe/taskit-overlay:\
/develop/oe/openembedded
export PATH=/develop/oe/openembedded/bitbake/bin:$PATH

The first line sets the variables BBPATH. It is used by bitbake to search for
configuration files. Here, build contains your local.conf, and taskit-overlay and
openembedded contain distribution and machine configurations.

The second line adjusts the PATH variable so that you do not have to type the full path
every time you want to start bitbake.

Creating a new root filesystem

18

Note

This value only works with the stable branch, if you want to use the development
branch you have to obtain bitbake separately and adjust the path accordingly.

Tip

It is advised to put both lines into a file, e.g. sourceme, so that you do not have
to type them every time you want to build something. Now you can enter the
following line before you start bitbake the first time in your shell session:

. sourceme

7.1.5. Keeping the metadata up to date

The metadata from the OpenEmbedded repository can change each day, so can the taskit
overlay. These changes can be bug fixes or feature additions.

To update all the metadata, just enter the corresponding directory (/develop/oe/
taskit-overlay and /develop/oe/openembedded) and use the following command:

git pull

It is advised to remember the current revision before updating in case the update includes
some bugs, so that you can go back easily. Just enter

git show

and you see the last change in the current branch. The first line includes the commit hash.

If you notice that builds do not work anymore after updating or the result has some errors
use

git checkout hash

to go back to the commit (hash) remembered. In this state, you cannot use git pull. You
have to checkout “stable/2009” again to update it:

git checkout stable/2009

To list the changes between hash and the current checked out revision, use

git log hash..

To learn more about git, consult http://git-scm.com.

7.2. Building and installing images

7.2.1. Building images

7.2.1.1. Stamp9G20/PortuxG20

After setting up the build environment, you can start to build images. The smallest
image you can build is the helloworld-image. It contains just a statically linked helloworld

http://git-scm.com

Creating a new root filesystem

19

application, which is started on boot and then hangs forever. This is a good test to see, if
your environment is setup correctly.

bitbake helloworld-image

Although the image is simple, it will take a while until it is ready, because the toolchain
will be built first. This can take some hours if you have a slow system. The following builds
will not take so long, as the toolchain will then be built already (unless you wipe the tmp
directory).

As a next step you could built the base-image. It contains everything needed to boot the
target board.

bitbake base-image

When the command is finished, you can find the image in the directory /develop/oe/
tmp/deploy/glibc/images/machine. Replace machine with the machine you set in
the local.conf.

If everything worked as expected, you can try to build default image, that came preloaded
with your product. It is called taskit-image. Before you try to build it, you have to add
some lines to your local.conf:

PREFERRED_PROVIDER_virtual/javac-native = "ecj-bootstrap-native"
PREFERRED_PROVIDER_virtual/java-native = "cacao-native"
PREFERRED_PROVIDER_virtual/java-initial = "cacao-initial"
PREFERRED_PROVIDER_classpath = "classpath"

PREFERRED_VERSION_cacao-initial = "0.98"
PREFERRED_VERSION_cacao-native = "0.99.3"
PREFERRED_VERSION_jamvm = "1.5.0"

PREFERRED_VERSION_classpath = "0.97.2"
PREFERRED_VERSION_classpath-minimal = "0.97.2"
PREFERRED_VERSION_classpath-native = "0.97.2"
PREFERRED_VERSION_classpath-initial = "0.93"

They are needed, because the taskit-image contains jamvm and classpath and without
the correct version numbers, the build might fail. These are the settings we used for
building the image. If they do not work for you, see http://wiki.openembedded.net/
index.php/Java#Version_suggestions for further information.

If you only use devices without a screen, you can replace

PREFERRED_PROVIDER_classpath = "classpath"

with

PREFERRED_PROVIDER_classpath = "classpath-minimal"

This leaves out all graphical components of classpath and thereby improves build times.

7.2.1.2. Stamp9G45

A small image to try at first, is the core-image-minimal. If it builds without errors, you can
be sure everything is set up correctly:

bitbake core-image-minimal

http://wiki.openembedded.net/index.php/Java#Version_suggestions
http://wiki.openembedded.net/index.php/Java#Version_suggestions

Creating a new root filesystem

20

Now you could also try to build the taskit-demo-image but this will take some more time
as it includes QtEmbedded:

bitbake taskit-demo-image

The bootloader can also be built using OpenEmbedded Core. In case of the Stamp9G45
which uses a Linux based loader with an initramfs, you have to switch to uclibc mode so
that the initramfs is small compared to an eglibc version:

TCLIBC=uclibc bitbake virtual/bootloader

7.2.2. Installing images

After finishing the build, you will get a standard kernel image and two file system
images (jffs2 and tar) in the directory /develop/oe/tmp/deploy/glibc/images/
stamp9g20evb. There will also be symlinks to each file with a shorter name, e.g.

• uImage-stamp9g20evb.bin

• taskit-image-stamp9g20evb.jffs2

• taskit-image-stamp9g20evb.tar

For the Stamp9G45, the corresponding images will appear in the tmp-eglibc/deploy/
images/stamp9g45/ subdirectory.

7.2.2.1. Installing on an SD card

Before flashing the rootfs into the integrated flash, we will test the system on an SD card.
For this, you need an SD card with at least one partition. We will assume, that your SD card
is accessible as device /dev/sdb and you have a directory /media/card. Additionaly
you have to have root rights to proceed with the following steps.

Caution

Make sure, that you use the correct device file or you will lose data.

The first thing to do is to format the first partition of the SD card with the ext3 file system:

mkfs.ext3 /dev/sdb1

All data on this partition will be lost.

Now it should be mounted to /media/card:

mount /dev/sdb1 /media/card

You can now extract the files to SD card. Enter the directory /develop/oe/tmp/deploy/
glibc/images/stamp9g20evb and use the following command:

tar -xvf taskit-image-stamp9g20evb.tar -C /media/card

Finally, unmount the SD card:

Creating a new root filesystem

21

umount /media/card

If you remove the SD card now and place it into the SD card slot of the target board, you
can boot the system from the U-Boot prompt with the following command:

run sdboot

Important

Do not simply switch off the board when the SD card is mounted read-write
(default). The ext3 file system is not made for power loss situations. Use the
halt command and wait until

Power down.

can be read on the serial console.

7.2.2.2. Installing on internal flash

When you have tested the root file system on the SD card, you can write the jffs2 version
to the internal flash. Because the jffs2 is mounted during the time, Linux is booted, you
cannot easily replace it from within Linux. There are ways, but there are a bit complicated
and unsafe. Therefore it is better to flash it from U-Boot or the newly created SD card.

In this section we will use the SD card to write the rootfs to the flash memory.

To write the jffs2 image to the flash memory, you obviously need the image accessible on
the target board. Either copy it to SD card or mount your development directory via NFS.

Before you flash the image, you have to identify the correct MTD-Partition like in
Chapter 6, Compiling a new Linux kernel

cat /proc/mtd

You should get something like this:

dev: size erasesize name
mtd0: 00020000 00020000 "bootstrap"
mtd1: 00040000 00020000 "uboot"
mtd2: 00020000 00020000 "env1"
mtd3: 00020000 00020000 "env2"
mtd4: 00200000 00020000 "linux"
mtd5: 1fd60000 00020000 "root"

The image must be written to the partition with the name “root”, in this case it is /dev/
mtd5.

First, erase the partition completely.

flash_eraseall -j /dev/mtd5

The -j is used to indicate, that a jffs2 image will be written to the partition. It will put a
so-called CLEANMARKER into each flash block. Jffs2 uses them to test, if the last erase
operation was correctly completed. If it is missing, jffs2 will erase the block again on the
first mount resulting in a unneeded double erase.

Creating a new root filesystem

22

Now enter the directory containing the jffs2 image. Depending on the type of flash, use
either

nandwrite /dev/mtd5 taskit-image-stamp9g20evb.jffs2

for NAND flash or

flashcp -v taskit-image-stamp9261evb.jffs2 /dev/mtd5

for NOR flash.

The jffs2 image is now written to the flash and can be used on next boot with the U-Boot
command

run flashboot

7.3. Customizing images

There are multiple ways to manipulate the contents of the file system image. The following
sections describe some of the ways. Some ways need an overlay of your own. So the first
thing we do is to create this overlay.

We kind of created a half overlay already in Section 7.1.4, “Setting up the environment”.
By specifying /develop/oe/build in BBPATH, bitbake is already instructed to look for
configuration files in this directory. This includes machine definitions. To make it a full
overlay, just replace

BBFILES = " \
 /develop/oe/taskit-overlay/recipes/*/*.bb \
 /develop/oe/openembedded/recipes/*/*.bb \
"

with

BBFILES = " \
 /develop/oe/build/recipes/*/*.bb \
 /develop/oe/taskit-overlay/recipes/*/*.bb \
 /develop/oe/openembedded/recipes/*/*.bb \
"

in your /develop/oe/conf/local.conf

Now, bitbake will also look for recipes (package descriptions) in this directory.

7.3.1. Creating your own machine

This section overlaps in parts with Section 7.3.3, “Customizing existing packages”,
because you need to customize the kernel package to add a machine.

By adding your board as a new machine, you can add board specific customizations to
packages. You could of course do that with the machine, you base your work on, e.g.
stamp9g20evb, but than you will not be able to use the original customizations as a
reference anymore.

The only disadvantage of creating your own machine is, that you have to replicate
customizations you need/want, that have already been done for other machines.

Creating a new root filesystem

23

Adding a machine is most of the time a two step process, see Procedure 7.1, “Adding a
machine”
Procedure 7.1. Adding a machine

1. Add a machine definition

2. Add a kernel recipe/customize an existing kernel recipe

As you create a machine based on a taskit product, you will most probably just alter
the kernel configuration used to build the kernel.

7.3.1.1. Adding a machine definition

Creating a new machine definition most of time boils down to copying an existing machine
definition and modifying it. As your are using a taskit product, copy the corresponding
file from /develop/taskit-overlay/conf/machine/ to /develop/build/conf/
machine/. Create the directory beforehand.

As an example, we create a new machine called “custommachine”, based on the
Stamp9G20 EVB. We copy the file stamp9g20evb.conf to your overlay and call it
custommachine.conf:

cp /develop/oe/taskit-overlay/conf/machine/stamp9g2evb.conf \
/develop/oe/build/conf/machine/custommachine.conf

The contents of the file should now look like Example 7.4, “Custom machine definition
before modification”

#@TYPE: Machine
#@Name: taskit Stamp9G20 Evaluation Board
#@DESCRIPTION: Machine configuration for the Stamp9G20 Evaluation Board

TARGET_ARCH = "arm"

PREFERRED_PROVIDER_virtual/kernel = "linux"

KERNEL_IMAGETYPE = "uImage"

#don't try to access tty1
USE_VT = "0"

MACHINE_FEATURES = "kernel26 ext2 vfat usbhost usbgadget"

used by sysvinit_2
SERIAL_CONSOLE = "115200 ttyS0"
IMAGE_FSTYPES ?= "jffs2"
EXTRA_IMAGECMD_jffs2 = "--little-endian --eraseblock=0x20000 -n"

require conf/machine/include/tune-arm926ejs.inc

Example 7.4. Custom machine definition before modification

These are the name and description of your machine. Replace it with approriate text.
These features will be used in task based images or in tasks in general. Tasks are
packages that do not contain any files but just dependencies. They will add extra
dependencies to some general tasks (e.g. task-base). So this is a place, where you
can influence to some degree, what packages will be added to the file system image.
For available machine features, look into recipes/tasks/task-base.bb in the
OpenEmbedded repository.

Creating a new root filesystem

24

As an example, let us say you do not need any usb support but want to to
have pppd in all images (works only for task based images or images explicitly
using these variables). To achieve that, remove “usbhost” and “usbgadget” from
MACHINE_FEATURES and add “ppp”.
These are the fstypes normally build for this machines. We have overridden this value
in Example 7.1, “Bitbake local configuration”.
These are extra parameters for the mkfs.jffs2 command and are essential to build
correct jffs2 images for the device. Do not change unless you know what you are
doing.

You can also add two further variables MACHINE_ESSENTIAL_EXTRA_RDEPENDS and
MACHINE_EXTRA_RDEPENDS. You can add package names to both variables. The former
is used for packages essential to boot and will be added as dependencies for task-boot.
These should land in almost all images (provided they use task-boot). Packages mentioned
in the second will be added as dependencies for task-base.

As a last resort, you can also add the variable IMAGE_EXTRA_INSTALL and list packages
that should end in all images. It is highly discouraged to use this method. It is better to
create your own image if the other described methods are not enough to customize the
image. See Section 7.3.2, “Creating your own image”.

After the mentioned modifications, your machine definition could look like in Example 7.5,
“Custom machine definition after modification”.

#@TYPE: Machine
#@Name: Custom Machine
#@DESCRIPTION: My first custom machine

TARGET_ARCH = "arm"

PREFERRED_PROVIDER_virtual/kernel = "linux"

KERNEL_IMAGETYPE = "uImage"

#don't try to access tty1
USE_VT = "0"

MACHINE_FEATURES = "kernel26 ext2 vfat ppp"

used by sysvinit_2
SERIAL_CONSOLE = "115200 ttyS0"
IMAGE_FSTYPES ?= "jffs2"
EXTRA_IMAGECMD_jffs2 = "--little-endian --eraseblock=0x20000 -n"

require conf/machine/include/tune-arm926ejs.inc

Example 7.5. Custom machine definition after modification

7.3.1.2. Customizing the kernel recipe

Now it is time to customize the kernel image so that you can let bitbake build the kernel
and the file system. This is especially useful if you want to include kernel modules in the
file system.

The first step is to create a kernel config as described in Chapter 6, Compiling a new
Linux kernel.

Creating a new root filesystem

25

After doing so, we copy the kernel recipe and corresponding files used for the Stamp9G20
Evaluation Board to your overlay.

cp -r /develop/oe/taskit-overlay/recipes/linux /develop/oe/build/recipes

Now create the directory /develop/oe/build/recipes/linux/linux-2.6.29/
custommachine. In this directory, place the file .config from the kernel configuration
process renamed to defconfig.

Finally edit the kernel recipe itself (/develop/oe/build/recipes/linux/
linux_2.6.29.bb). You should duplicate all Stamp9G20 specific lines, in this case
DEFAULT_PREFERENCE and SRC_URI_append. DEFAULT_PREFERENCE tells bitbake,
which recipe it should build. The recipe with the highest DEFAULT_PREFERENCE
for a given machine is built (if the recipe version is not fixed with
PREFERRED_VERSION_recipename in one of the config files). See Example 7.6,
“Customized kernel recipe” for reference.

require recipes/linux/linux.inc

S = "${WORKDIR}/linux-2.6.29"

Mark archs/machines that this kernel supports
DEFAULT_PREFERENCE = "-1"
DEFAULT_PREFERENCE_stamp9g20evb = "1"
DEFAULT_PREFERENCE_custommachine = "1"

SRC_URI = "${KERNELORG_MIRROR}/pub/linux/kernel/v2.6/linux-2.6.29.tar.bz2 \
 file://defconfig"

SRC_URI_append_stamp9g20evb = " \
 file://stamp9g20.patch;patch=1 \
"
SRC_URI_append_custommachine = " \
 file://stamp9g20.patch;patch=1 \
"

Example 7.6. Customized kernel recipe

7.3.2. Creating your own image

Creating your own image is relatively easy and the most straightforward way to get exactly
what you want into the root file system. You can do it by either extending an existing image
or creating a completely new one.

New image recipes should be created in your overlay in the recipes/images directory.
We will call our image custom-image so create the file custom-image.bb in this directory.

As a first example, we extend taskit-image to get additional packages into it. See
Example 7.7, “custom-image.bb: Extending taskit-image” for reference.

require recipes/images/taskit-image.bb

IMAGE_INSTALL += " \
 iptables \
"

export IMAGE_BASENAME="custom-image"

Example 7.7. custom-image.bb: Extending taskit-image

Creating a new root filesystem

26

This includes the contents of the taskit-image. The full path ensures, that it is found
although it is in another overlay.
This adds iptables to the contents of your image.
This tells the build system how to name the file system image. If you do not set this
variable, the image will be called the same as the extended image.

Now imagine you want to base your image on taskit-image, but it does contain stuff you
do not want, e.g. the java stack, and you still want to add iptables. This can only be solved
by copying, renaming and editing the image file. Example 7.8, “taskit-image.bb” shows
you the contents of the taskit-image (at the time of this writing).

IMAGE_PREPROCESS_COMMAND = "create_etc_timestamp"

DISTRO_SSH_DAEMON ?= "dropbear"
DISTRO_PACKAGE_MANAGER ?= "opkg-nogpg opkg-collateral"

IMAGE_LINGUAS = "en-gb de-de fr-fr"

IMAGE_INSTALL += " \
 busybox \
 modutils-initscripts \
 netbase \
 base-files \
 base-passwd \
 update-alternatives \
 ${MACHINE_ESSENTIAL_EXTRA_RDEPENDS} \
 \
 ${DISTRO_PACKAGE_MANAGER} \
 ${DISTRO_SSH_DAEMON} \
 mtd-utils \
 u-boot-utils \
 jamvm \
 librxtx-java \
 librxtx-jni \
 gdbserver \
 strace \
 libstdc++ \
 ${@base_contains('MACHINE_FEATURES', 'ext2', 'task-base-ext2', '', d)} \
 ${@base_contains('MACHINE_FEATURES', 'vfat', 'dosfstools', '', d)} \
 ${@base_contains('MACHINE_FEATURES', 'ppp', 'task-base-ppp', '', d)} \
"

export IMAGE_BASENAME="taskit-image"

inherit image

Example 7.8. taskit-image.bb

This instructs the build system to create a timestamp in /etc in the root file system,
so that you always know, when the file system image was created.
This variable contains all locales, for which the binary versions should be installed.
If you do not need localization in your application, you can leave this variable empty.
This statement has to be in all images, that do not derive from other images. It inherits
the image bitbake class, which includes all code needed for building images.

Now let us say, you want to get rid of the java stack, do not need the flexibility of
MACHINE_FEATURES, don't use localization and want to include iptables. Additionally,
you do not need the C++ library (it would be added anyway, if it was needed by a package).
The resulting image recipe would look like in Example 7.9, “custom-image.bb: Complete
new image”

Creating a new root filesystem

27

IMAGE_PREPROCESS_COMMAND = "create_etc_timestamp"

DISTRO_SSH_DAEMON ?= "dropbear"
DISTRO_PACKAGE_MANAGER ?= "opkg-nogpg opkg-collateral"

IMAGE_LINGUAS = ""

IMAGE_INSTALL += " \
 busybox \
 modutils-initscripts \
 netbase \
 base-files \
 base-passwd \
 update-alternatives \
 ${MACHINE_ESSENTIAL_EXTRA_RDEPENDS} \
 \
 ${DISTRO_PACKAGE_MANAGER} \
 ${DISTRO_SSH_DAEMON} \
 mtd-utils \
 u-boot-utils \
 gdbserver \
 strace \
 iptables \
"

export IMAGE_BASENAME="custom-image"

inherit image

Example 7.9. custom-image.bb: Complete new image

7.3.3. Customizing existing packages

This section will only discuss customization for a specific device. You can of course make
modifications to all recipes as you like without keeping them specific to one machine.

Machine specific customization of a recipe can be done in two ways:

• overriding variables and functions in the recipe

• overriding files (given in the SRC_URI variable) in the recipe subdirectories

Overriding of variables and functions is easy. You just take the variable/function name,
add the machine name separated with an underscore to the end. We have already used
this in Example 7.6, “Customized kernel recipe”.

In this example, we have also overridden one file. To do that, there can be multiple
directories, where you can place the file. If you have a bitbake called foo_1.0.bb
(meaning it is package foo, version 1.0), your file to override can be placed in the following
subdirectories in the recipe directory (ordered by priority):

1. foo-1.0: Files in this directory are only used for the recipe foo, version 1.0.

2. foo: Files in this directory are used for all recipes called foo without looking at the
version.

3. files: Files in this directory are used for all recipes in the directory, without looking
at the name or version (You can have multiple completely different recipes in each
directory. Directories are just used for categorizing recipes.).

Creating a new root filesystem

28

So to actually override one of the files, create a directory custommachine in one of these
directories and place a file with the name you want to override there. It will be used
instead of the default ones.

The only thing you have to keep in mind when you customize a package by copying it to
your overlay is, that you also have to copy the default files, or at least the ones, you do
not override.

7.3.4. Adding own packages

Sooner or later, you want to add your own application to the root file system. This section
will tell you how to do it for a simple application (some source files resulting in one
standalone binary, no data files, no extra libraries needed).

The sample project contains three files:

• main.c

• util1.c

• util2.c

To build this project we use the Makefile shown in Example 7.10, “Makefile”. It will create
a binary called “app” from the sources.

app: main.o util1.o util2.o
 ${LINK.c} $? -o $@

clean:
 rm -r app *.o

install:
 install -d ${DESTDIR}/bin
 install -m755 app ${DESTDIR}/bin/app

Example 7.10. Makefile

To build the binary with this make file, just enter the following command:

make CC=arm-angstrom-linux-gnueabi-gcc

To install the binary, the make file includes an install rule. This rule is basically there to
ease the writing of the bitbake recipe later. The destination directory will be given in the
DESTDIR variable, e.g.:

make DESTDIR=/develop/appinstall install

To make the recipe even more easy to write, put the sources and the make file in a directory
called app-1.0 (we assume the project is called app and is the first release version).

Now we create a tarball from this directory.

tar -cvjf app-1.0.tar.bz2 app-1.0

It is now time to create the recipe. To do that, create a directory called recipes/app in
your overlay and put a file called app_1.0.bb in there, see Example 7.11, “app_1.0.bb”
for reference. Additionally create a files directory and put the tarball there.

Creating a new root filesystem

29

SRC_URI="file://${PN}-${PV}.tar.bz2"
PR="r0"

do_install () {
 oe_runmake install DESTDIR=${D}
}

Example 7.11. app_1.0.bb

This line tells bitbake where it can find the sources. The variables PN and PV are
automatically expanded to the package name and package version. To use these
variable has the advantage, that you can update the recipe to a new version by just
renaming it.

If you do not want to copy the tarball to the overlay or have it on a webserver, you
can of course replace the path with either an absolute path or the URL, e.g.:

SRC_URI="file:///develop/${PN}-${PV}.tar.bz2"

or

SRC_URI="http://hostname/${PN}-${PV}.tar.bz2"

This is the package revision. If you leave it out, it defaults to “r0”. The value should
be incremented every time you modify this recipe so that bitbake knows it has to
rebuild it and the package manager opkg knows it needs to update the package in
the root file system after it is build.
To install any files, you have to implement the install task (do_install). We use
the function oe_runmake to call the install target of our make file. The variable D
holds the temporary directory, where all files, that should go into packages, should
be installed, so we pass the contents of it to the DESTDIR variable.

Apart from that, we do not need anything else in the recipe, as the defaults of
OpenEmbedded handle the rest for us.

Using and configuring the bootloader

30

8. Using and configuring the bootloader
The Stamp9G20 and PortuxG20 come U-Boot preinstalled. This is an open-source
bootloader for embedded systems developed and maintained by Denx Software
Engineering. As it is already well documented, it is not described here. See the original
documenation for further information: http://www.denx.de/wiki/view/DULG/UBoot.

The Stamp9G45 on the other hand comes with a Linux-based bootloader named Boots. It
uses a standard Linux kernel for hardware support, busybox for scripting and kexec to
load the real kernel to be used. There are also some helper scripts. To permanantly store
settings and boot scripts it uses the U-Boot environment variable tools.

This chapter will describe this bootloader.

8.1. Concepts

8.1.1. Components

The Boots bootloader itself is just a couple of small programs and shell scripts. Combined
with the Linux kernel, a small initramfs containing kexec and busybox and U-Boot style
environment variables this results in a flexible boot mechanism.

• Linux kernel. The Linux kernel is the center of the bootloader and responsible for
hardware access. Using it instead of dedicated bootloader drivers gives you the same
maturity and stability as the real system.

• kexec. Without kexec, this software would not be able to function as a bootloader.
Kexec is a mechanism provided by the Linux kernel, to start another kernel without
rebooting.

• Busybox. Busybox contains a lot of small userspace tools and a shell to allow flexible
scripting for the boot process.

• U-Boot style environment variables. U-Boot uses a very simple but reliable way
to store boot variables and scripts. This method is also used here.

8.1.2. Boot procedure

Figure 8.1, “Boots flow-chart” shows the general boot procedure. As you can see, at first,
the script code in the variable preboot is executed. After that, the boot is delayed for
bootdelay tenths of a second. Depending on wether this delay was aborted or not, either
bootcmd or abortcmd is executed. Normally, bootcmd does not finish, as it is used to boot
into the real system, but if it does or abortcmd finishes, either a shell will be launched
for you to interact with the system, or loopcmd will be executed if it exists. Both will be
restarted a second after they finish.

http://www.denx.de/wiki/view/DULG/UBoot

Using and configuring the bootloader

31

Figure 8.1. Boots flow-chart

8.2. Reference

8.2.1. Environment variables

abortcmd command (list) that is executed when the boot delay is aborted

abortparams contains additional parameters to control the abort of the boot
delay, can be either

key {key-nr}

or

gpio {gpio-nr} [high-active]

arguments:

key-nr key number as specified in linux/input.h

gpio-nr GPIO number as described here: http://
www.armbedded.eu/node/258

high-active specifies if the GPIO should be high active, every
number greater 0 means high active, everything
else (even leaving it out) means low active

bootcmd command (list) that is executed after the boot delay

bootdelay delay between the execution of precmd and bootcmd, can be
aborted by a key press

http://www.armbedded.eu/node/258
http://www.armbedded.eu/node/258

Using and configuring the bootloader

32

bootdevices white space separated list of devices that a search for bootable
system by the autoboot command

delay_device delay in seconds that the autoboot command should wait before
trying to look for a bootable system on device, can be needed for
devices that are enumerated asynchronously

fstype_device filesystem type used by the autoboot when mounting device, can
be empty most of the time, when not using a flash filesystems

kexecoptions extra options used by the autoboot when invoking kexec

loopcmd command (list) that, if defined, gets executed in a loop after either
bootcmd or abortcmd finishes

options_device mount options used by the autoboot when mounting device,
default to "ro"

precmd command (list) that is executed on every boot before the boot delay

stdin, stdout, stderr contain the device file, which is used to get input or print output
and error messages, defaults to /dev/ttyS0

	Linux Guide
	Table of Contents
	1. Introduction
	2. Supported products
	3. Configuring the system
	3.1. Using the package manager
	3.1.1. Updating the package database
	3.1.2. Upgrade installed software
	3.1.3. Installing new software
	3.1.4. Removing installed packages
	3.1.5. Listing available packages
	3.1.6. Search for a package in the package list
	3.1.7. Listing installed packages

	3.2. Configuring network interfaces
	3.2.1. Automatic configuration (DHCP)
	3.2.2. Static configuration

	4. Setting up a development system
	4.1. Installing the toolchain
	4.2. Setting up an NFS Server
	4.3. Setting up a TFTP server

	5. Compiling and debugging applications
	5.1. Compiling the application sample
	5.1.1. Stamp9G20/PortuxG20
	5.1.2. Stamp9G45

	5.2. Starting the sample
	5.3. Debugging the sample
	5.4. Downsizing the binary

	6. Compiling a new Linux kernel
	6.1. Unpacking the kernel sources
	6.2. Configuring the kernel
	6.3. Compiling the kernel
	6.4. Preparing the kernel image
	6.5. Installing the kernel

	7. Creating a new root filesystem
	7.1. Setting up the OpenEmbedded build system
	7.1.1. Prerequisites
	7.1.2. Getting the needed metadata
	7.1.2.1. Stamp9G20/PortuxG20
	7.1.2.2. Stamp9G45

	7.1.3. Configuring bitbake
	7.1.3.1. Stamp9G20/PortuxG20
	7.1.3.2. Stamp9G45

	7.1.4. Setting up the environment
	7.1.5. Keeping the metadata up to date

	7.2. Building and installing images
	7.2.1. Building images
	7.2.1.1. Stamp9G20/PortuxG20
	7.2.1.2. Stamp9G45

	7.2.2. Installing images
	7.2.2.1. Installing on an SD card
	7.2.2.2. Installing on internal flash

	7.3. Customizing images
	7.3.1. Creating your own machine
	7.3.1.1. Adding a machine definition
	7.3.1.2. Customizing the kernel recipe

	7.3.2. Creating your own image
	7.3.3. Customizing existing packages
	7.3.4. Adding own packages

	8. Using and configuring the bootloader
	8.1. Concepts
	8.1.1. Components
	8.1.2. Boot procedure

	8.2. Reference
	8.2.1. Environment variables

