
Features
• Modbus-Interface

• Widely used protocol for measuring and
automation

• gpio.NET Core Interface
• Uniform set of commands and registers
• Supports Modbus RTU and Modbus ASCII via

RS232/RS485
• Supports Modbus ASCII via USB
• Gateway with protocol conversion between

RS232/RS485 (RTU) and USB (ASCII)
• Configuration stored in EEPROM

• RS232/RS485
• Selectable baud rate from 1200 Baud to 1MBit
• Free configurable serial device (data width,

parity, stop bits)
• Selectable operation mode (RS232 or RS485)

• USB
• USB 2.0 CDC-Device

• Unique serial number
• Modbus-Address changeable through Modbus

command via serial line
• 1 KByte EEPROM

• Seperated Config-Section and User-Section
• Both sections can be write-protected

seperately
• 4 analogue outputs

• Interface for voltage or current output
• 0-5 V, 0-10 V, 0-24 mA

• Signal generator
• Generates sinus, saw tooth, rectangle and

triangle
• 2,5 kHz max.

gpio.NET
AO

Preliminary
Short Description

gpio.NET
analogue Output-
Card

gpio.AO
U-Series

gpio.AO
R-Series

gpio.AO

Overview
The gpio.NET Core interface is extended by analogue outputs and a frequency
generator. Each output is capable to be either current or voltage source. The
modules easily integrate into existing Modbus systems and can be identified and
configured by a unique serial number even in a running system. Beyond that,
they offer a uniform set of registers over the hole gpio.NET family.

Draft

Drawing 1: Dimensions

Interfaces

For communication, gpio.NET modules feature up to two Modbus interfaces. R-
Series provide routing between those. The DSUB connectors (X10 and X11) are
only available in R-Series.

USB

The USB device port (X1) belongs to the standard equipment of gpio.NET cards.
Because of this, the module is accessible from prevalent PC or laptops. To deal
with issues resulting of this, Modbus ASCII is the only available protocol used

2/8

gpio.AO

over USB.1 A gpio.NET card is detected as a virtual serial port by the host
system and so does not differ from a real one from a programs point of view.

USB device port is used as power source if connected to a host. As an
alternative, PIN9 from either X10 or X11 can used instead.2 When using PIN9
care has to be taken to use a well-regulated 5 volts source.

RS232

A serial interface with RS232 levels is
available at gpio.NET module's X11 DSUB
connector. Except the both data lines and
GND no additional control lines are used.3
The RS232 interface is capable of de- and
encoding Modbus-RTU as well as Modbus-
ASCII. The highest possible baud rate is
250k baud. By contemporaneous utilisation
of USB and RS323, it is possible to control
one additional card connected via RS232
using the hosts USB connection.

Pin X11
1
2 RXD
3 TXD
4
5 GND
6
7
8
9 VBUS

Table 1: Assignment
RS232

RS485

The R-Series offer possibility to link via a
RS485 bus. In that case, both potential
data lines are available on X10 as well as
on X11.4 In this manner, a RS485 bus is
easily realised with RS232 cables. As if
using RS232, Modbus-RTU and Modbus-
ASCII are both usable. The maximum bit
rate is 1 Mbit. A 110 ohms terminating
resistor is selectable by jumper J4.

Table 2: Assignment RS485

Via RS485 connected cards are routed over USB to the host, allowing access to
the RS485 bus is without special PC hardware.

1 Modbus RTU – the standard mode – requires the exact temporal detection of a characters
reception. This criterion cannot be guaranteed on standard PCs what causes RTU mode to
become instable. Modbus ASCII is not affected by this constrain.

2 Ring indicators (PIN9) of both DSUB are connected with USB 5V power source (VBUS) (valid
for X10 only with connected jumper J7). This way, power can be transmitted to the next or
all gpio.NET modules in one RS485 bus system.

3 When plugging into a PC's RS232 interface, consider the RS485 assignment that is using
control lines of a standard RS232 interface. These pins (DTR, DSR) should not be connected
to a PC directly.

4 The potential data lines use standard RS232 control lines DTR and DSR. Connecting those
signals to a PC directly is to be avoided.

3/8

Pin X10 X11
1
2
3
4 RS485+ RS485+
5 GND GND
6 RS485- RS485-
7
8
9 VBUS VBUS

http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=contemporaneous&trestr=0x8004

gpio.AO

Drawing 2: RS485 bus on USB with additional power supply

Individual parts of a bus constructed as shown in drawing 2 can be supplied at
arbitrary points by an isolated power supply. Mind to really seperate VBUS of
these groups. The example demonstrates this by means of the first card
connected to the host PC via USB and the rest of the bus being supplied by a
seperate power source. Opened jumper J7 disrupts the VBUS connection on
DSUB's PIN9.

Register description
The common set of registers simplifies working with different gpio.NET
modules. Device identification, configuration of interfaces and general behaviour
remain consitent throughout the family.

The gpio.Net Core Interface defines four sections in Holding Register's address
space.5 Section 0x0000-0x00FF contains general configuration registers –
called Core-Register. Registers that are gpio.AO specific occupy the Application-
Register section 0x0100-0x0FFF which is followed by the EEPROM. Registers 0x1000-
0x107F serve as persistent configuration used at start-up. This group collects default
values of Core- and Application-Registers. Section 0x2000-0x237F is non-volatile
memory available for the user.

EEPROM sections 0x1000-0x107F and 0x2000-0x237F can be protected against
unaware writes separately.

All registers are – as common by Modbus – 16bit wide.

5 The Modbus protocol distinguishes four address ranges – Inputregisters, Holdingregisters,
Inputs und Coils. Inputs and Coils offer bitwise access to ressources. While Holdingregisters
and Coils are read/writeable, the other two are read-only. Each type uses a 16bit address
space that can overlap each other.

4/8

gpio.AO

0x0000 HREG_CTRL 0x1000 reserved

0x0001 HREG_PM 0x1001 HREG_PM

0x0002 HREG_BAUDSEL 0x1002 HREG_BAUDSEL

0x0003 HREG_DBITS 0x1003 HREG_DBITS

0x0004 HREG_PARITY 0x1004 HREG_PARITY

0x0005 HREG_STOP 0x1005 HREG_STOP

0x0006 HREG_SERIAL_MODE 0x1006 HREG_SERIAL_MODE

0x0007 HREG_MODBUS_MODE 0x1007 HREG_MODBUS_MODE

... reserved ... reserved

0x0100 CH_CFG0 0x1012 SIGNAL_FORM

0x0101 CH_CFG1 0x1013 FREQ

0x0102 CH_CFG2 0x1014 SIGNAL_CHANNEL

0x0103 CH_CFG3

... reserved

0x0104 DATA0

0x0105 DATA1

0x0106 DATA2

0x0107 DATA3

0x0108 SIGNAL_FORM

0x0109 SIGNAL_FREQ 0x2000 User EEPROM

0x010A SIGNAL_CHANNEL ...

... reserved 0x2380

Table 3: Holding registers

HREG_CTRL

15 14 13 12 11 10 9 8

CTRL_ACCESS_KEY (0x8E)

7 6 5 4 3 2 1 0

reserved
CONN_

INIT
USER_
WREN

CFG_
WREN

DEFAULT RESET

CTRL_ACCESS_KEY

Any changes to HREG_CTRL take only effect when the correct access key is
written to the upper eight bits each time HREG_CTRL is accessed. This key
(0x8E) needs to be set every time this register is about to be written to.

CONN_INIT

A logic 1 initialises the serial connection (RS232/RS485) according to the

5/8

gpio.AO

related holding registers.

USER_WREN

Enables write access to the user EEPROM section.

CFG_WREN

Enables write access to the persitent configuration section.

DEFAULT

Restores default factory settings.

HREG_PM

This register is currently unused.

HREG_BAUDSEL

Specifies the baud rate that is used on RS232/RS485. The register contains one
of those selectors described below.

Selector Baud rate Selector Baud rate

0 1200 6 57600

1 2400 7 115200

2 4800 8 230400

3 9600 9 250000

4 19200 10 500000

5 38400 11 1000000

HREG_DBITS

Contains the number of data bits used on serial line – selectable between seven
and eight bits.

HREG_PARITY

Configures which type of parity checking is used. Valid selectors are listed
below.

Selector Parity

0 none

1 odd

2 even

6/8

gpio.AO

HREG_STOP

The number of additional stopbits – default is 0.

SERIAL_MODE

Selects the mode the serial line operates on. Choose 0 for RS232 or 1 for
RS485.

MODBUS_MODE

To switch between MODBUS RTU and ASCII modes this register is used.
Changes will not affect the USB connection that always operates in MODBUS
ASCII. Choose 0 for ASCII or 1 for RTU.

CH_CFG0/1/2/3

Specifies the operating mode for the corresponding analogue output. Valid
modes are listed here.

Selector Mode

0x1000 Voltage mode 0V – 5V

0x1001 Voltage mode 0V – 10V

0x1005 Current mode 4mA – 20mA

0x1007 Current mode 0mA – 24mA

DATA0/1/2/3

The output value as positive 16bit number relative to maximum output
(65535).

SIGNAL_FORM

Specifies the generated wave form.

Selector Wave form

1 Sinus

2 Rectangle

3 Triangle

4 Saw thooth

SIGNAL_FREQ

Selects the output frequency of the signal generator. Maximum is 2500 Hz.

7/8

gpio.AO

SIGNAL_CHANNEL

15 14 13 12 11 10 9 8

reserved

7 6 5 4 3 2 1 0

reserved
X5

(I4/U4)
X4

(I3/U3)
X3

(I2/U2)
reserved

X2
(I1/U1)

Select the channel(s) the generated signal is directed to. Each channel
corresponds to a bit configured in SIGNAL_CHANNEL. Reserved bits shall be
written 0.

8/8

	Overview
	Draft
	Interfaces
	USB
	RS232
	RS485

	Register description
	HREG_CTRL
	CTRL_ACCESS_KEY
	CONN_INIT
	USER_WREN
	CFG_WREN
	DEFAULT

	HREG_PM
	HREG_BAUDSEL
	HREG_DBITS
	HREG_PARITY
	HREG_STOP
	SERIAL_MODE
	MODBUS_MODE
	CH_CFG0/1/2/3
	DATA0/1/2/3
	SIGNAL_FORM
	SIGNAL_FREQ
	SIGNAL_CHANNEL

